Roll No \qquad
MEEM-101
M.E./M.Tech., I Semester

Examination, December 2020

Applied Mathematics

Time : Three Hours
Maximum Marks:70
Note: i) Attempt any five questions.
ii) All questions carry equal marks.

1. a) Find the Laplace transform of
i) $e^{-3 t} \sin ^{2} t$
ii) $t^{2} \cos 2 t$
b) Find the inverse Laplace transform of
i)

ii) $\frac{s}{\left(s^{2}+1\right)\left(s^{2}+2\right)}$
2. a) Solve the following differential equation using Laplace transform :

$$
\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+3 y=e^{-t}, \quad y(0)=y^{\prime}(0)=1
$$

b) Find Fourier transform of

$$
f(t)=\left\{\begin{array}{cl}
1-t^{2}, & -1<t<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

3. a) Find the Z transform of
i) $\frac{(n+1)(n+2)}{2}$
ii) $n(n-1)$
b) Find the Z transform of $f * g$, where $f(n)=u(n)$, $g(n)=2^{n} u(n)$ using Convolution theorem.
4. a) Use Picard's method, obtain a solution upto third approximation of Differential equation
$\frac{d y}{d x}=x+y^{2}$ where $y(0)=0$
b) Using Euler's method, solve fory at $x=0.5$ from $\frac{d y}{d x}=x+y+x y, y(0)=1$ taking $h=0.1$.
5. a) Solve the Eluptic equations
$u_{x x}+l_{0}=0$
friche following squares mesh with boundary values as dshown:

b) Using Simpson's rule, evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$, taking $h=0.1$.
6. a) In a class of 10 students , 4 are boys and the rest are girls. Find the probability that a student selected will be a girl.
b) Fit a Poisson distribution to the following :

$x:$	0	1	2	3	4
$y:$	192	100	24	3	1

7. a) In a lot of 500 solenoids 25 are defective, find the probability of $0,1,2,3$ defective solenoids in a random sample of 20 solenoids.
b) Two independent samples of sizes 7 and 9 have the following values :

Sample A:	10	12	10	13	14	11	10	-	-
Sample B :	10	13	15	12	10	14	11	12	11

Test whelfor the difference between the mean is signifiogat.
8. Configer the following system of differential equations repsesenting a prey and predator population model :
$\frac{d x}{d t}=x^{2}-y, \frac{d y}{d t}=x+y$
i) Identify all the critical points of the system of equations given above.
ii) Obtain the type and stability of these critical points.

